Abstract

AbstractThe effects of organophilic montmorillonite (OM)/poly(ethylene glycol) (PEG) hybrids and polypropylene (PP) on the phase morphology, rheological behaviors, and mechanical properties of ultrahigh molecular weight polyethylene (UHMWPE) were investigated. The presence of the OM/PEG hybrids and PP in UHMWPE was found that it was able to lead to a significant reduction of melt viscosity and enhancement in tensile strength, and elongation at break of UHMWPE. A quantitative analysis indicated a larger affinity of the OM to the PEG than to PP or UHMWPE in the composites, suggesting that OM was intercalated by PEG. This was proposed to be responsible for the reduction of viscosity. Polarizing optical microscopy analysis, on the other hand, indicated that the dispersed OM, which acted as a nucleating agent, lowered the spherulite dimension and increased the spherulite number, resulting in high tensile strength and elongation at break. © 2007 Wiley Periodicals, Inc. J Appl Polym Sci, 2007

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call