Abstract

Ultra small silicon nanoparticles (Si-NPs) with narrow size distribution are prepared in a one step process by UV picosecond laser ablation of silicon bulk in liquid. Characterization by electron microscopy and absorption spectroscopy proves Si-NPs generation with an average size of 2 nm resulting from an in situ photofragmentation effect. In this context, the current work aims to explore the liquid medium (water and toluene) effect on the Si-NPs structure and on the optical properties of the colloidal solution. Si-NPs with high pressure structure (s.g. Fm3m) and diamond-like structure (s.g. Fd3m), in water, and SiC moissanite 3C phase (s.g. F4[combining macron]3m) in toluene are revealed by the means of High-Resolution TEM and HAADF-STEM measurements. Optical investigations show that water-synthesized Si-NPs have blue-green photoluminescence emission characterized by signal modulation at a frequency of 673 cm(-1) related to electron-phonon coupling. The synthesis in toluene leads to generation of Si-NPs embedded in the graphitic carbon-polymer composite which has intrinsic optical properties at the origin of the optical absorption and luminescence of the obtained colloidal solution.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call