Abstract
X-ray detection with luminescent screens requires optical signal transfer as an intermediate step between x-ray detection and conversion to an electronic signal. Luminescent screens may be granular (phosphor screens), structured (e.g. CsI) or transparent (scintillators). The optical signal is imaged with lenses, fibre optics, electron optics or by proximity focussing to an electronic detector. Poor focussing or poor optical contact may degrade the signal and noise transfer characteristics, i.e. modulation transfer function (MTF) and detective quantum efficiency (DQE). The case when x-rays are detected with granular luminescent screens, imaged onto flat panel electronic detectors is considered here. The detector assembly often requires layers of glue or protective thin films creating optical gaps, in which light is spread, hence spatial resolution is degraded. The noise spectrum is not necessarily changed the same way. Its exact shape depends on the dominant noise sources in a given detector configuration under the specific operating conditions: The noise of the primary x-ray quanta, noise aliasing and direct x-ray detection by the electronic detection layer are the main contributions in this investigation. Especially at high spatial frequencies small optical gaps in conjunction with white quantum noise from direct x-ray absorption of the electronic imager degrade DQE: A gap of 40 μm between luminescent screen and detector reduces the DQE by 33% at the Nyquist frequency. This was demonstrated with an a-Si imager of 143-μm pixel size and a Lanex Fine luminescent screen operated at 100 kV.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.