Abstract

We examined both the sufficiency of the optic-flow velocity field and the influence of optic-flow information beyond the velocity field on the active control of heading. The display simulated a vehicle traveling on a circular path through a random-dot 3D cloud under a static or a dynamic scene in which dots were periodically redrawn to remove information beyond a velocity field. Participants used a joystick, under either velocity and acceleration control dynamics, to steer and align the vehicle orientation with their perceived heading while experiencing random perturbations to the vehicle orientation. Frequency response (Bode) plots show reasonably good performance under both display conditions with a decrease in gain and an increase in phase lag for the dynamic scene for both control dynamics. The performance data were then fit by a Crossover Model to identify reaction time and lead time constant to determine how much participants anticipated future heading to generate lead control. Reaction time was longer and lead time constant was smaller for the dynamic than the static scene for both control dynamics. We conclude that the velocity field alone is sufficient to support closed-loop heading control, but optic-flow information beyond the velocity field improves visuomotor performance in self-motion control.

Highlights

Read more

Summary

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.