Abstract

AbstractSupercritical CO2 extraction is a viable alternative process for the extraction of high‐quality oil from olive husk (also known as olive pomace), a residue obtained in the production of olive oil. We analyzed the effect of pressure (100–300 bar), temperature (40–60°C), solvent flow (1–1.5 L/min), and particle size (0.30–0.55 mm) on four important quality parameters of the oil extracted with CO2: tocopherol concentration, extinction coefficients at 232 and 270 nm, and saponification value. Response surface methodology was used to obtain mathematical expressions related to the operating variables and parameters studied. Results from these experiments were also used to design a three‐step sequential CO2 extraction procedure to obtain a higher‐quality extract. The optimal operational sequence consisted of a first extraction step at 75 bar for 1 h using 1% (vol/vol) ethanol modifier, followed by a second extraction stage at 350 bar for 2.5 h without ethanol and a third step, also at 350 bar, for 2.5 h but using ethanol. These extraction conditions obtained an intermediate fraction of oil with 64% yield and all normal parameters according to European Commission food legislation. This fraction is suitable without any further refining. On the contrary, the oils obtained by hexane extraction and by conventional supercritical CO2 extraction at optimal conditions are suitable for human consumption after further refining. This last finding may result in improved economics of the sequential CO2 extraction process compared to the conventional extraction method with hexane.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call