Abstract
In this study, we investigated the deposition of a polyethylene oxide (PEO)-like coating on the surfaces of polypropylene (PP) films via atmospheric pressure cold plasma jet-assisted polymerization using ethylene glycol dimethyl ether as a precursor. The PEO-like coatings were deposited using different operating parameters (deposition potential and monomer flow rates) and we determined their effects on the film properties, such as the topography, surface chemistry, and surface free energy, based on atomic force microscopy, scanning electron microscopy, transmission electron microscopy, X-ray photoelectron spectroscopy, and contact angle measurements. The interfacial tension between various biological liquids and the PEO-like film surfaces were studied in detail. The antifouling properties of the PEO-like films were examined in vitro, including protein adsorption and platelet adhesion. The results showed that the retention of the PEO-like character and the formation of new functional groups were highly dependent on the operating parameters. Significant changes in the film topography and wettability were obtained by further regulating the plasma operating parameters. All of the PEO-like films had good antifouling properties according to the in vitro analysis results.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.