Abstract

In clinical applications, magnetic bead-based analyte separation has attracted interest over other types of separation techniques in the microfluidic protocol. The objective of the present study is to separate two different types of magnetic and one type of nonmagnetic particles from each other simultaneously with minimum cross-contamination in a microchannel. A numerical study is carried out for characterizing one hybrid microfluidic device. The device works on the principle of split-flow thin fractionation, field-flow fractionation, and free flow magnetophoresis. The geometry of the microfluidic bioreactor had been established by Samanta et al. in 2017, whereas the present research emphasized the impact of operating parameters in particle spreading, separation, and capture in the hybrid free flow magnetophoretic device. The impact of magnetic and fluidic forces on transport, separation, and capture of the three different types of particles is analyzed. The performance of the microfluidic device is checked by capture efficiency and separation indices for different operating conditions. Transport of the three different types of microspheres in the microchannel is prescribed following an Eulerian–Lagrangian model by using an in-house code. Two types of magnetic particles of diameters 2 µm and 1 µm and one nonmagnetic particle of 0.5 µm diameter are used. Some group variables comprising of magnetic and fluidic parameters are found as an exclusive function of capture efficiency and separation index. In addition, from curve fitting, the universal dependence of capture efficiency and separation index on the various group variables is recognized for different curves with a reasonably high degree of compliance.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call