Abstract

The catalytic hydrogenation of nitrobenzoic acid (NBA) to the aminobenzoic acid was used as a model reaction for a quantitative study of influences of the operating conditions on the observed reaction rate in a single channel monolith reactor operated in Taylor flow regime. A simple mathematical model was derived and used for the analysis of hydrogenation experiments carried out in batch mode. Results showed that in the investigated concentration range of NBA, i.e. 0.0005–0.02mol/l and under the hydrogen pressure of 1bar, the observed reaction rate is considerably limited by mass transport. At higher concentrations of NBA, the reaction is controlled by the hydrogen mass transport while at lower concentrations the mass transport of NBA is dominant. The analysis of experimental results, which were obtained when the length of gas bubbles and liquid slugs were varied, showed that the reaction took place in the thin liquid film surrounding the gas bubble. The liquid slug serves as exchanger of reactants and reaction products between bulk liquid slug and liquid film surrounding the catalyst surface.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.