Abstract

The molding flow of carbon fiber reinforced thermoplastic sheet molding compounds (CFRTP-SMC) is complex and requires a comprehensive understanding of underlying processes. This study investigates the material behavior during compression molding processes, focusing on the influence of the ratio of initial material charge area over mold area (charge ratio) on mechanical properties. The results highlight the CFRTP-SMC material's excellent flowability and moldability and confirm that the mechanical properties and internal morphology change with charge ratios. In addition, a correlation between mechanical properties and internal morphology is established through quantitative analysis of fiber orientation distributions using X-ray computed tomography. This comprehensive investigation not only sheds light on the molding ‘behavior of CFRTP-SMCs, but also underscores the importance of material charge ratios in influencing the mechanical properties. This study also provides a case study for validating numerical process models.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.