Abstract

Promising alternatives to conventional dry and fluid coolant applications are minimum quantity lubricant (MQL) or near dry grinding. Despite several researches, there have been a few investigations about the influence of MQL parameters on the process results, such as oil flow rate, air pressure, MQL nozzle position and distance from the wheel–workpiece contact zone. The current study aims to show through experiment and modeling, the effects of the above parameters on grinding performance such as grinding forces and surface roughness. The results show that the setting location of the nozzle is an important factor regarding the effective application of MQL oil mist. It has been shown that optimal grinding results can be obtained when the MQL nozzle is positioned angularly toward the wheel (at approximately 10–20° to the workpiece surface). In addition, it is found that the efficient transportation of oil droplets to the contact zone requires higher mass flow rate of the oil mist towards the grains flat area and longer deposition distance of an oil droplet. Applying the new setup, considerable reduction in the grinding forces and surface roughness has been achieved.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call