Abstract

The influence of oil content and droplet size of oil-in-water emulsions on the heat development in an ohmic heating system was investigated. The setup was run with constant power or voltage. Emulsions consisted of sunflower oil (10–50 wt%), aqua dest. (90–50 wt%) and whey protein isolate (1.25/ 2.5/ 3.75/ 5.0 and 6.25 wt%) Two different droplet size distributions were produced, large (d0.5 ≈ 2.0 μm) and small (d0.5 ≈ 0.3 μm), for each oil mass fraction. The emulsions were ohmically heated from 10 to 80 °C at a constant power of 3.0 kW and constant voltage of 15 V/cm. The electrical conductivity decreased with an increasing oil content, resulting in longer or shorter heating time for constant voltage or constant power input, respectively. The droplet size only affected the heating process at the highest oil content. Industrial relevanceEmulsions occur in a wide range of food products (e.g. sauces, dressings, desserts) and have properties giving structure to the food system. Ohmic heating is an emerging thermal process with improved (e.g. faster or less energy required) heating characteristics. The influence of physical changes due to different droplet sizes are of interest because these might also affect the heating characteristic. In addition, the direct comparison of two different process regulations (constant power and constant voltage) indicate which set up is expedient to a successful heating process. This study aims to identify the influence of emulsion-induced structural changes and process changes on the heating rates, which is of interest for the food industry and the related machine building industry.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.