Abstract

AbstractHabitat characteristics are primary determinants of nearshore marine communities. However, biological drivers like predation can also be important for community composition. Sea otters (Enhydra lutris ssp.) are a salient example of a keystone species exerting top‐down control on ecosystem community structure. The translocation and subsequent population growth and range expansion of the northern sea otter (Enhydra lutris kenyoni) in Washington State over the last five decades has created a spatio‐temporal gradient in sea otter occupation time and density, and acts as a natural experiment to quantify how sea otter population status and habitat type influence sea otter diet. We collected focal observations of sea otters foraging at sites across the gradient in varying habitat types between 2010 and 2017. We quantified sea otter diet composition and diversity, and long‐term rates of energy gain across the gradient. We found that sea otter diet diversity was positively correlated with cumulative sea otter density, while rate of energy gain was negatively correlated with cumulative density. Additionally, we found that habitat type explained 1.77 times more variance in sea otter diet composition than sea otter cumulative density. Long‐term diet studies can provide a broader picture of sea otter population status in Washington State.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call