Abstract
Abstract. The combined use of partial steps and of an energy-enstrophy conserving momentum advection scheme was shown by Barnier et al. (2006) to yield substantial improvements in the surface solution of the DRAKKAR ¼° global sea-ice/ocean model. The present study extends this investigation below the surface with a special focus on the Atlantic and reveals many improvements there as well: e.g. more realistic path, structure and transports of major currents (Gulf Stream, North Atlantic Current, Confluence region, Zapiola anticyclone), behavior of shedded rings, narrower subsurface boundary currents, stronger mean and eddy flows (MKE and EKE) at depth, beneficial enhancement of cyclonic (anticyclonic) flows around topographic depressions (mountains). Interestingly, adding a no-slip boundary condition to this improved model setup cancels most of these improvements, bringing back the biases diagnosed without the improved momentum advection scheme and partial steps (these biases are typical of other models at comparable or higher resolutions). This shows that current-topography interactions and full-depth eddy-admitting model solutions can be seriously deteriorated by near-bottom sidewall friction, either explicit or inherent to inadequate numerical schemes.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.