Abstract

The influence of exit tip thickness of nozzle δ e on the flow field and performance of a jet pump was studied numerically in this paper. It is found that δ e has influence on the distribution of turbulence kinetic energy k. If δ e is ignored, k takes the highest value but dissipates rapidly than that of nozzle with a certain tip thickness. δ e also affect apparently the development of tip vortex, which will occur near the exit tip of nozzle. The bigger the δ e is, the larger the vortex is. The tip vortex develops with the increase of flow rate ratio q. When q=1 and δ e =0.6∼0.8mm, a small vortex will be found downstream the tip vortex. And a concomitant vortex happens down the tip vortex in the case of q=1 and δ e =0.8mm. As q increases to 2, the downstream small vortex disappears and the concomitant vortex becomes bigger. It is also found that the tip vortex might interact with the possible backflow that formed in the throat tube and parts of suction chamber. The center of backflow was affect evidently by δ e . With the increase of δ e , the center of backflow under the same q will go downstream. When δ e =0.4mm, the center of backflow goes farthest. Then, as the further increase of δ e , the center of backflow will go back some distance. Although, δ e has relatively great influence on the flow field within the jet pump, it exerts only a little impact on the performance of jet pump. When δ e =0.2∼0.6mm, the jet pump possess better performance. In most case, it is reasonable to ignore the nozzle exit tip thickness in performance prediction for the purpose of simplicity.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.