Abstract
ABSTRACTThe aim of this work is to understand the influence of notches under thermomechanical fatigue (TMF) in a directionally solidified Ni‐base superalloy. Experiments were performed utilizing linear out‐of‐phase and in‐phase TMF loadings on longitudinally oriented smooth and cylindrically notched specimens. Several notch severities were considered with elastic stress concentrations ranging from 1.3 to 3.0. The local response of the notched specimens was determined using the finite element method with a transversely isotropic viscoplastic constitutive model. Comparing the analysis to experiments, the locations observed for crack nucleation in the notch, which are offset from the notch root in directionally solidified alloys, are consistent with the maximum von Mises stress. Various local and nonlocal methods are evaluated to understand the life trends under out‐of‐phase TMF. The results show that a nonlocal invariant area‐averaging method is the best approach for collapsing the TMF lives of specimens with different notch severities.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Fatigue & Fracture of Engineering Materials & Structures
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.