Abstract

The need for materials with good characteristics for critical applications, such as in defense and aerospace, has led to the development of new metallic materials. In the present work the impact fracture behavior of a dual hardness steel composite was studied in two geometries, “crack arrester” and “crack divider”. The composite was produced by forging and rolling followed by treatments of quenching and tempering and then annealing. The composite was characterized by optical microscopy as well as hardness, microhardness, tensile and impact tests. The failure mechanisms in impact at different temperatures were analyzed by scanning electron microscopy. The results showed that the mechanical behavior was significantly affected by the heat treating processes, with higher impact resistance associated with the crack arrester orientation. These results are analyzed in terms of the state of stress at the crack tip.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.