Abstract

Adhesives in electronic packages contain numerous pores and cavities of various size-scales. Moisture diffuses into these voids. During reflow soldering, the simultaneous action of thermal stresses and moisture-induced internal pressure drives both pre-existing and newly nucleated voids to grow and coalesce, causing adhesive failure. In this work, a nonuniform initial porosity distribution in the adhesive is assumed. The entire adhesive is modeled by void-containing cells that incorporate vapor pressure effects on void growth and coalescence through an extended Gurson porous material model. Our computations show that increasing nonuniformity in the adhesive's initial porosity <i xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">f</i> <sub xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">0</sub> drives the formation of multiple damage zones. Under the influence of vapor pressure or residual stresses, interface delamination becomes the likely failure mode in low mean porosity adhesives with nonuniform <i xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">f</i> <sub xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">0</sub> . For high mean porosity adhesives, the combination of vapor pressure and nonuniform <i xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">f</i> <sub xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">0</sub> distribution induces large-scale voiding throughout the adhesive. Residual stresses further accelerate voiding activity and growth of the damage zones, resulting in brittle-like adhesive rupture.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.