Abstract
Abstract The inhibitory performance of nonoxynol-9 (N9) as a corrosion inhibitor for carbon steel was evaluated in 1.0 M HCl solution at different temperatures. Potentiodynamic polarization, electrochemical impedance spectroscopy (EIS) and quantum chemical calculation methods were used in this study. The results indicated that the corrosion rate decreased with increasing concentration of N9 up 150 ppm and decreased with the increase in temperature of the medium. The comparison between the results obtained by polarization and EIS methods showed a good agreement. The corrosion inhibition effect of N9 could be related to the adsorption of N9 molecules on the metal surface. Polarization curves indicated that N9 behaves as a mixed type inhibitor. EIS exhibited one capacitive loop which indicates that the corrosion reaction is controlled by charge transfer process. The inhibition mechanism of N9 involves physical interaction between the inhibitor and metal surface. The adsorption of N9 on carbon steel affords physisorption process and obeyed the Langmuir adsorption isotherm.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.