Abstract

Abstract The heat and mass transfer of rotating Casson nanofluid flow is incorporated in the present study. Influence of magnetic field, nonlinear thermal radiation, viscous dissipation and Joule heating effects are taken into the account. A set of nonlinear ordinary differential equations are obtained from the governing partial differential equations with the aid of suitable similarity transformations. The resultant equations are solved for the numerical solution using Runge-Kutta-Fehlberg fourth-fifth order method along with shooting technique. The impact of several existing physical parameter on velocity, temperature and nanofluid concentration profiles are analyzed through graphs and tables in detail. It is found that, velocity component decreases and temperature component increases for rotating parameter.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.