Abstract

We theoretically analyze the influence of nonlinear effects such as spatial holeburning, two-photon absorption and gain compression on the power–current and beam characteristics of a high-power broad-area distributed Bragg reflector laser with a stripe width of 50 $$\upmu$$ m operated in pulsed mode and compare them with simulations of a similar Fabry–Perot laser. On the one hand, spatial holeburning leads to a higher mean intensity within the cavity for a Fabry–Perot laser and resulting higher losses in combination with two-photon absorption and gain compression, on the other hand, excitation of higher order lateral modes leads to losses through the Bragg grating. In combination with spatio-temporal power variations resolved by the utilized time-dependent traveling wave model two-photon absorption leads to higher power losses compared to those models using averaged powers.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.