Abstract

We develop the fast-Fourier-transformation path-integral approach to investigate the quantum decay of a nonlinear dissipative system. The action of the bounce trajectory, i.e. the exponential factor of decay rate, is obtained. In the case of the nonlinear coupling f(x)=tanh[λ(x-xb)] between the system and its environment, we find that the nonlinear coupling suppresses the decay rate. In contrast to the usual linear coupling, the action will not abide by the law SB=a[1-b(T/Tc)2] and the crossover temperature rebounds, which means that the system steps into the quantum tunneling region at a higher temperature.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.