Abstract

Enhancement of the heat transfer rate inside the double pipe heat exchangers is significant for industrial applications. In present work, the usage of non-uniform magnetic field on the heat transfer rate of the nanofluid flow streamed inside double pipe heat exchangers are comprehensively studied. Computational technique of CFD is used for the visualization of the nanofluid hydrodynamic in existence of the magnetic source. Influences of the magnetic intensity and nanofluid velocity on the heat transfer are also presented. Simple algorithm is used for the modeling of the incompressible nanofluid flow with addition of magnetic source. Presented results show that magnetic source intensifies the formation of the circulation in the gap of the inner tube and consequently, heat transfer is enhanced in our domain. Comparison of different geometries of tube reveals that the triangle tube is more efficient for improvement of the heat transfer of nanofluid flow. Our results indicate that heat transfer in the tube with triangular shape is more than other configurations and its performance is 15% more than smooth tube.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call