Abstract

This study examines the effect of non-linear radiation and viscous dissipation on the convective Newtonian fluid flow with temperature-dependent viscosity and the quadratic Boussinesq approximation around a cylinder with uniform heat flux at the wall. The coupled partial differential equations of the problem are non-dimensionalized with appropriate variables and reduced via stream functions. Regular perturbation technique is employed to transform the nonlinear coupled partial differential equations into a system of nonlinear coupled ordinary differential equations solved using the Trapezoidal method. A surge in the radiative parameter was found to heighten the fluid’s velocity and temperature, while an increase in the dissipative effect enhances the skin friction and heat transfer distributions. The limiting cases of the model considered and the results obtained in this study are consistent with those in the literature.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.