Abstract

This paper addresses the modelling of cesium sorption in non-equilibrium and nonlinear conditions with a two-site model. Compared to the classical Kd approach, the proposed model better reproduced the breakthrough curves observed during continuous-flow stirred tank reactor experiments conducted on two contrasted soils. Fitted parameters suggested contrasted conditions of cesium sorption between 1) equilibrium sites, with low affinity and high sorption capacity comparable to CEC and 2) non-equilibrium sites, with a fast sorption rate (half-time of 0.2–0.3 h), a slow desorption rate (half-time of 3–9 days) and a very low sorption capacity (0.02–0.04% of CEC). Comparison of EK sites densities with sorption capacities derived from the literature suggests that the EK equilibrium and kinetic sites might correspond to ion exchange and surface complexation of soil clay minerals respectively. This work stresses the limits of the Kd model to predict 137Cs sorption in reactive transport conditions and supports an alternative non-equilibrium nonlinear approach.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call