Abstract

Although filamentous algae have the characteristics of high nutrient assimilation ability, and adaptation to different conditions, studies on their role in water purification of constructed wetlands (CWs) are limited. In this study, the wastewater treatment capacity under different nitrogen sources was explored by constructing a filamentous algal CW (FACW) system. Results confirmed the fast and stable operation efficiency of the FACW system. Ammonia nitrogen was preferred in Cladophora sp. absorption and assimilation. The nutrient consumption rate (NCR) for total nitrogen (TN) of AG was 2.65 mg g−1 d−1, much higher than that of nitrate nitrogen (NG) (0.89 mg g−1 d−1). The symbiosis of bacteria and Cladophora sp. Contributed to pollutant removal. A stable and diverse community of microorganisms was found on Cladophora sp. Surface, which revealed different phylogenetic relationships and functional bacterial proportions with those attached on sediment surface. In addition, temperature and light intensity have great influence on the purification ability of plants, and low hydraulic retention time is beneficial to the cost-effective operation of the system. This study provides a method to expand the utilization of wetland plants and apply large filamentous algae to the purification of wetland water quality.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.