Abstract

Thermoluminescence (TL) of synthetic quartz exposed to beta irradiation following implantation with 60 keV N+ ions at fluences ranging between 1 × 1014 and 5 × 1015 ions/cm2 is reported. The glow curve measured at 5°C/s typically consists of a prominent peak near 110°C, studied in this work, and minor glow peaks at around 130°C and 190°C. The TL intensity of the main peak increased both with implantation and with fluence of implantation. The dependence of the intensity on the heating rate and fluence suggests that the implantation introduces new defects that may possibly act as recombination centres. The increase in TL intensity with the heating rate exhibited by implanted samples has been observed in other luminescence materials. This anti-quenching phenomenon has been described as a competition effect between multiple luminescence pathways in luminescence materials. Kinetic analysis of the main glow peak using the initial rise, various heating rate and glow-curve deconvolution methods shows that the activation energy of the main peak is about 0.7 eV with no systematic change due to ion fluence.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.