Abstract

The destruction of naphthalene, as representative polycyclic aromatic hydrocarbons, by surface dielectric barrier discharge is investigated in air as well as dry and humidified nitrogen at ambient temperature. Naphthalene destruction efficiency is evaluated in terms of chemical change vis-a-vis energy utilization. The detected byproducts are qualitatively evaluated in order to understand the role of the active species in the destruction process. The results show that the destruction efficiency and the energy efficiency are higher in the dry nitrogen than in the humidified nitrogen, and these decrease with the increase of the humidity. Measured concentration of ozone as a byproduct qualitatively indicates the roles of oxygen and ozone in the destruction process in air. The analysis of the aerosol particles formed during the destruction process, both in the dry and humidified nitrogen, confirmed the adverse effects of the humidity on the byproducts formation and subsequently on the destruction process.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.