Abstract

The objective of the present study was to investigate the role of cell-to-cell contact in the influence of nitric oxide (NO) on the secretory function of the bovine corpus luteum (CL). In Experiment 1, separate small luteal cells (SLC) or large (LLC) luteal cells were perfused with 100 micro M spermineNONOate, a NO donor, or with 100 micro M Nomega-nitro-L-arginine methyl ester (L-NAME), a NO synthase (NOS) inhibitor; in Experiment 2, a mixture of LLC and SLC and endothelial cells was cultured and incubated with spermineNONOate or L-NAME; in Experiment 3, spermineNONOate was perfused into the CL (100 mg/4 hr) by a microdialysis system in vivo. Perfusion of isolated SLC and LLC with the NO donor or NOS inhibitor (Experiment 1) did not affect (P > 0.05) secretion of progesterone (P(4)) or oxytocin (OT). L-NAME perfusion increased (P < 0.05) leukotriene C(4) (LTC(4)) secretion by both SLC and LLC cells. Treatment of mixtures of luteal cells with an NO donor (Experiment 2) significantly decreased (P < 0.001) secretion of P(4) and OT and increased (P < 0.001) production of prostaglandin F(2alpha) (PGF(2alpha)) and LTC(4). L-NAME stimulated (P < 0.001) P(4) secretion, but did not influence (P > 0.05) OT, PGF(2alpha) or LTC(4) production. Intraluteal administration (Experiment 3) of spermineNONOate increased (P < 0.001) LTC(4) and PGF(2alpha), decreased OT, but did not change P(4) levels in perfusate samples. These data indicate that cell-to-cell contact and cell composition play important roles in the response of bovine CL to treatment with NO donors or NOS inhibitors, and that paracrine mechanisms are required for the full secretory response of the CL in NO action. Endothelial cells appear to be required for the full secretory response of the CL to NO.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call