Abstract

Titania (TiO2) nanoparticles (NPs) with different morphologies (spherical, rod-shaped, and mixed) were prepared by hydrothermal treatment of different nitric acid (HNO3)/titanium (IV) isopropoxide (TTIP) molar ratios (0.25, 0.5, 1.0, and 1.7) at different hydrothermal temperatures (90, 150, 200, and 250 °C), hydrothermal times (6, 12, and 24 h), and calcination temperatures (500, 625, and 750 °C). The crystalline structure, morphology, and surface texture of the obtained TiO2 NPs were characterized by X-ray diffraction, nitrogen adsorption–desorption isotherm, field emission-scanning electron microscopy, and high resolution-transmission electron microscopy analyses. Under a larger HNO3: TTIP molar ratio, higher hydrothermal temperature, and higher hydrothermal time, the spherical mixed anatase–rutile phase TiO2 NPs were converted to a nanorod (NR)-shaped rutile phase (TiO2-R). The TiO2-R NRs gave the highest methanol conversion level (65%) and hydrogen yield (45%) in the oxidative steam reforming of methanol at 400 °C.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call