Abstract

Rooted cuttings of Rhododendron canescens “Brook” and Rhododendron austrinum were grown in sand culture with a modified Hoagland's solution under greenhouse conditions. The effect of varying ammonium:nitrate (NO3 −:NH4 +) ratios (100:0, 75:25, 50:50, 25:75, 0:100) on growth, chlorophyll content, plant quality, and elemental tissue concentration were determined. With NO3 − as the nitrogen (N) form, both azalea cultivars exhibited less vegetative growth, lower overall plant quality, with leaves showing visual chlorotic symptoms in comparison to plants receiving NH4 + as the N‐form. Leachate pH was highest with NO3 − as the predominate N‐form and decreased significantly with each increment of NH4 +. With both azalea cultivars, N‐form significantly influenced uptake and utilization of essential plant nutrients. Leaf concentrations of N, potassium (K), calcium (Ca), sulfur (S), boron (B), and molybdenum (Mo) were highest with NO3 −‐N. Leaf elemental concentrations of phosphorous (P), magnesium (Mg), copper (Cu), iron (Fe), manganese (Mn), and zinc (Zn) increased as NH4 + supplied more of the N‐ratio. Significant differences in Mg, Mn, and Zn were observed between species. Results from this study show that foliar N concentration is not an accurate indicator of plant growth response. Further investigations are needed to determine if foliarchlorosis and low growth rates observed with NO3 − fed plants due to an Fe deficiency, to low nitrate reductase (NR) activity in the leaves, or to a combination of these factors.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call