Abstract
In this work, two medium Mn steels (5.8 and 5.7 wt pct Mn) were subjected to a quenching and partitioning (Q&P) treatment employing a partitioning temperature which corresponded to the start of austenite reverse transformation (ART). The influence of a 1.6 wt pct Ni addition in one of the steels and cycle parameters on austenite stability and mechanical properties was also studied. High contents of retained austenite were obtained in the lower quenching temperature (QT) condition, which at the same time resulted in a finer microstructure. The addition of Ni was effective in stabilizing higher contents of austenite. The partitioning of Mn and Ni from martensite into austenite was observed by TEM–EDS. The partitioning behaviour of Mn depended on the QT condition. The lower QT condition facilitated Mn enrichment of austenite laths during partitioning and stabilization of a higher content of austenite. The medium Mn steel containing Ni showed outstanding values of the product of tensile strength (TS) and total elongation (TEL) in the lower QT condition and a higher mechanical stability of the austenite.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.