Abstract

The influence of neutron irradiation on the microstructure and related mechanical properties of Ti Grade 2 in coarse- and ultrafine-grained conditions was investigated. It was found that mechanical properties of the coarse-grained (CG) state were significantly affected by neutron irradiation. At room temperature (RT), the yield stress increased by more than 30%, whereas the ductility decreased by more than 50%. An even bigger difference in the mechanical properties between irradiated and non-irradiated states was observed at a temperature of 300 °C. Changes in the mechanical properties can be attributed to the high density of defect clusters/dislocation loops induced by neutron irradiation. On the other hand, the ultrafine-grained (UFG) state is more resistant to radiation damage. The mechanical properties at RT did not change upon neutron radiation, while at a temperature of 300 °C, the yield stress increased only by about 10%. Enhanced radiation resistance of the UFG state can be attributed to the presence of a high density of dislocations and dense network of high-angle grain boundaries, which act as traps for radiation-induced defects and, thus, prevent the accumulation of these defects in the microstructure.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.