Abstract

The cross-linked polystyrene prepolymer was synthesized with divinylbenzene (DVB) as crosslinker via free-radical crosslinking copolymerization (FCC) and used as the matrix materials for E-glass fiber reinforced composites. The surface modification was performed by treatment of E-glass fiber with γ-methacryloylpropyl trimethoxysilane (MPS) solution. Fourier transform infrared spectroscopy (FTIR) was used to identify the functional groups on the surface modified glass fibers. Dynamic mechanical thermal analysis (DMTA) of these composites revealed that the dynamic storage modulus (E′) was gradually enhanced with the increasing content of DVB (0~3.0 wt %) whereas the damping parameter (tanδ) peaks are lower and broader, indicating better load bearing capacity. Moreover, the Tg was shifted to higher temperature corresponding to the increasing of crosslinking density. Morphology of fracture surfaces for these composites showed different fiber-matrix interfacial adhesion which was mainly attributed to the variation of crosslinking network structure in the interface.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call