Abstract

This study investigated the influence of neonatal handling on amphetamine-induced conditioned place preference (CPP), as well as the consequent anxiety-like symptoms and oxidative status related to drug abstinence in young rats. Male pups were exposed to tactile stimulation (TS) or neonatal isolation (NI) for 10min every day from postnatal day one (PND1) to PND21. After being weaned (PND22), pups were separated by handling type until PND40, when treatment with amphetamine (AMPH-4mg/kg/mL ip, for 8days) or vehicle (NaCl 0.9% ip, 1mL/Kg) in CPP started. AMPH-conditioning evoked drug-preference (in 24h and 96h) and abstinence symptoms in unhandled (UH) animals, followed by oxidative damage in the cortex, hippocampus and striatum. TS showed beneficial influence, as observed by the decreased drug-preference (24 and 96h) in relation to UH and NI, showing no abstinence symptoms in this last period, as observed by the reduced anxiety-like symptoms. The oxidative status indicated a protective influence of TS on brain tissues: lower lipid peroxidation (LP) and reduced protein carbonylation (PC) in the cortex, hippocampus and striatum. Furthermore, TS also increased antioxidant defenses in brain tissues and blood: i) increased plasma levels of vitamin C; ii) increased activity of catalase (CAT) and iii) higher levels of glutathione (GSH) in red blood cells (RBC). Moreover, there were positive correlations of AMPH-CPP with PC and LP levels in all the brain areas assessed. In summary, TS modifies AMPH-preference in the CPP paradigm, reducing drug abstinence behaviors, and stimulating the antioxidant defense system, thus protecting the brain areas closely related to addiction in young rats. Studies about TS and addiction in animal models should be extended to the molecular level.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.