Abstract

The relation between microstructure and creep property of austenitic heat-resistant cast steels with and without Nb addition under the condition of repeated vacuum carburizing and quenching was investigated. Cr-carbide scale is formed on the sample surface by a carburizing reaction, resulting in the depletion of Cr in the matrix adjacent to the scale. A carburized layer consisting of various fine carbides is observed below the Cr-depleted layer, and the carburized layer depth is suppressed by Nb addition. When process of vacuum carburizing and quenching is repeated, formation of voids caused by heating and rapid cooling is more remarkable in primary Cr carbides than in primary Nb carbides. As the carburized layer depth increases, creep rupture time of both cast steels shifts to the shorter time side; however, Nb addition is effective for extending creep rupture time at 1303 K.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.