Abstract

The catalytic activity of platinum (Pt) nanoparticles (NPs) towards methanol electrooxidation in alkaline media was demonstrated to be dependent on their interactions with their nanostructured ceria support. Ceria nanorods (NRs) with diameters of 5 to 10 nm and lengths of 15 to 50 nm as well as ceria NPs with diameters of 2 to 6 nm were applied as supports for similarly sized Pt NPs with diameters of 2 to 5 nm. Cyclic voltammetry data showed that Pt NPs supported on ceria NPs exhibited a 2-to-5-fold higher catalytic current density versus ceria NRs. X-ray photoelectron spectroscopic data indicated that Pt NPs deposited onto ceria NRs were disproportionally composed of oxidized species (Pt2+, Pt4+ and Pt–O–M) rather than Pt0 while Pt NPs on ceria NPs mainly consisted of Pt0. Stronger metal-support interactions between Pt NPs and ceria NRs are postulated to induce preferential oxidation of Pt NPs and consequently decrease the catalytic sites and overall activity.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.