Abstract

Dense films of an oxygen-excess-type solid electrolyte (OESE) based on Mg-doped lanthanum silicate (MDLS) were fabricated and applied to electrolyte materials for intermediate temperature solid oxide fuel cells (IT-SOFCs). To obtain dense MDLS films on NiO-MDLS porous substrates, a conventional spin-coating technique using the MDLS printable paste, obtained by mixing nano-sized MDLS particles and a dispersant, was employed. The Ni-MDLS anode supported single cells were then fabricated by printing porous cathode layer onto the electrolyte film surface. By optimizing fabrication conditions of an MDLS film and cathode, the highly active cathode/OESE interface (ASR = 0.23 Ω cm2 at 873 K) were successfully obtained, which resulted in high power density of 0.166 W cm−2 at 873 K in the fuel cell test when operated with argon-diluted hydrogen and pure oxygen as the fuel and the cathode gas, respectively.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.