Abstract

PurposeThe purpose of this paper is to investigate the effect of nano-alumina sealant sealing treatment on corrosion behavior of the Fe-based amorphous coatings deposited on 304 stainless steel plates by atmospheric plasma spraying (APS) with different hydrogen flow rates.Design/methodology/approachThe surface morphology and microstructure of the unsealed and sealed coatings were characterized by scanning electron microscopy and X-ray diffraction. The corrosion resistance of the coatings was investigated by potentiodynamic polarization test and electrochemical impedance spectroscopy experiment in 3.5 Wt.% NaCl solution.FindingsResults show that a few microcracks and pores exist in the as-sprayed Fe-based amorphous coatings. The pores on the surface of the coatings after sealing treatment have been filled with nano-alumina sealant, which can effectively prevent corrosive medium from entering into coatings. Electrochemical tests results show that the corrosion resistance of the coatings before sealing treatment decreases with the increase of hydrogen flow rate and is significantly improved by sealing treatment.Originality/valueThe effect of nano-alumina sealant sealing treatment on corrosion resistance of APS-sprayed Fe-based amorphous coatings is revealed. The corrosion resistance of the as-sprayed Fe-based amorphous coating can be significantly improved by nano-alumina sealant sealing treatment because of the blocking effect of nano-alumina sealant on corrosive medium, which confirms that the application of nano-alumina sealant sealing treatment is of a practical option to improve corrosion resistance of as-sprayed thermal sprayed coatings.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call