Abstract

The influences of organically modified montmorillonite (OMMT) on the viscoelasticity of poly(trimethylene terephthalate)/glass fiber/OMMT (PTT/GF/OMMT) hybrid nanocomposite materials at liquid, elastic and glassy states, respectively, were investigated by using the rotational rheometer and dynamic mechanical analyzer (DMA). The viscoelasticity results suggest that OMMT has many important influences on the structure, modulus and toughness of the hybrid nanocomposite materials. At melton state, the shear‐thinning phenomena of the hybrid composite melts become remarkable with increasing OMMT content. At low frequency, the shear storage modulus (G′) and shear loss modulus (G″) of the melts increase with increasing OMMT content. The melt's elastic response increases by OMMT, and OMMT improves the creep resistance of the melts; in addition, the stress relaxation of the hybrid composite melts become slow with increasing OMMT content, and the stress leavings becomes much higher with increasing OMMT content. At glassy state, the storage modulus of the hybrid nanocomposites increases with increasing OMMT content, while the materials' loss modulus increases first and then decreases with increasing OMMT content; therefore, OMMT nanosheets have reinforcement effect on the composites, and it also has definite toughening effect on the hybrid composite when the OMMT content is no >2 wt%. At rubbery state, the hybrid composites show lower decreasing storage modulus but have lower cold‐crystallization ability than that of pure PTT and PTT/GF composite. POLYM. COMPOS., 35:795–805, 2014. © 2013 Society of Plastics Engineers

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.