Abstract

Carbon nanotubes (CNTs) exhibit a high-potential for the reinforcement of polymers. The mechanical properties of potential matrices of fibre-reinforced polymers (FRP), such as epoxy resins, were significantly increased by low contents of carbon nanotubes (CNT) (tensile strength, Young's modulus and fracture toughness). Nano-particle-reinforced FRPs, containing carbon black (CB) and CNTs could successfully be manufactured via resin transfer moulding (RTM). A filtering effect of the nano-particles by the glass-fibre bundles was not observed. The glass-fibre-reinforced polymers (GFRP) with nanotube/epoxy matrix exhibit significantly improved matrix-dominated properties (e.g. interlaminar shear strength), while the tensile properties were not affected by the nano-fillers, due to the dominating effect of the fibre-reinforcement. The GFRP containing 0.3 wt% amino-functionalised double-wall carbon nanotubes (DWCNT-NH2) exhibit an anisotropic electrical conductivity, whereas the conductivity in plane is one order of magnitude higher than out of plane.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.