Abstract

This work examines the influence of N-protecting groups on the conversion and stereoselectivity of dihydroxyacetone phosphate (DHAP) dependent aldolase-catalyzed aldol additions of DHAP to N-protected-3-aminopropanal. Phenylacetyl-(PhAc-), tert-butyloxycarbonyl- ( t Boc-) and fluoren-9-ylmethoxycarbonyl- (Fmoc-)-3-aminopropanal were evaluated as substrates for d-fructose 1,6-bisphosphate aldolase from rabbit muscle (RAMA), and l-rhamnulose-1-phosphate aldolase (RhuA) and l-fuculose-1-phosphate aldolase (FucA), both from Escherichia coli. Using PhAc and t Boc ca. 70% conversions to the aldol adduct were achieved, whereas Fmoc gave maximum conversions of ca. 25%. The stereoselectivity of the DHAP-aldolases did not depend on the N-protected-3-aminopropanal derivative. Moreover, inversion of FucA stereoselectivity relative to that obtained with the natural l-lactaldehyde was observed. Both N-PhAc and t Boc adduct product derivatives were successfully deprotected by penicillin G acylase (PGA)-catalyzed hydrolysis at pH 7 and by treatment with aqueous TFA (6% v/v), respectively. However, the corresponding cyclic imine sugars could not be isolated, presumable due to the presence of a highly reactive primary amine and a keto group in the molecule, which lead to a number of unexpected reactions.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.