Abstract

BackgroundThe analysis of molecular variation within and between populations is crucial to establish strategies for conservation as well as to detect the footprint of spatially heterogeneous selection. The traditional estimator of genetic differentiation (FST) has been shown to be misleading if genetic diversity is high. Alternative estimators of FST have been proposed, but their robustness to variation in mutation rate is not clearly established. We first investigated the effect of mutation and migration rate using computer simulations and examined their joint influence on QST, a measure of genetic differentiation for quantitative traits. We further used experimental data in natural populations of Arabidopsis thaliana to characterize the effect of mutation rate on various estimates of population differentiation. Since natural species exhibit various degrees of self-fertilisation, we also investigated the effect of mating system on the different estimators.ResultsIf mutation rate is high and migration rate low, classical measures of genetic differentiation are misleading. Only ΦST, an estimator that takes the mutational distances between alleles into account, is independent of mutation rate, for all migration rates. However, the performance of ΦST depends on the underlying mutation model and departures from this model cause its performance to degrade. We further show that QST has the same bias. We provide evidence that, in A. thaliana, microsatellite variation correlates with mutation rate. We thereby demonstrate that our results on estimators of genetic differentiation have important implications, even for species that are well established models in population genetics and molecular biology.ConclusionsWe find that alternative measures of differentiation like F'ST and D are not suitable for estimating effective migration rate and should not be used in studies of local adaptation. Genetic differentiation should instead be measured using an estimator that takes mutation rate into account, such as ΦST. Furthermore, in systems where migration between populations is low, such as A. thaliana, QST < FST cannot be taken as evidence for homogenising selection as has been traditionally thought.

Highlights

  • The analysis of molecular variation within and between populations is crucial to establish strategies for conservation as well as to detect the footprint of spatially heterogeneous selection

  • We provide empirical data from Arabidopsis thaliana, a long-standing model for plant molecular biology that has recently become a model in plant population genetics [22]

  • Computer simulations We used forward population genetic simulations to investigate the behaviour of different estimators with varying migration and mutation rates

Read more

Summary

Introduction

The analysis of molecular variation within and between populations is crucial to establish strategies for conservation as well as to detect the footprint of spatially heterogeneous selection. Alternative estimators of FST have been proposed, but their robustness to variation in mutation rate is not clearly established. We first investigated the effect of mutation and migration rate using computer simulations and examined their joint influence on QST, a measure of genetic differentiation for quantitative traits. We further used experimental data in natural populations of Arabidopsis thaliana to characterize the effect of mutation rate on various estimates of population differentiation. Characterisation of population structure is a pivotal task in population genetics. It is important for inferring the evolutionary history of a species, assisting in conservation studies [1] and measuring dispersal [2,3,4]. If we consider only identity by descent, the topology of the genealogy is independent of the number of mutations

Methods
Results
Discussion
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.