Abstract

Mechanistic understanding and prediction of solute adsorption from fluids onto mineral surfaces is relevant for many natural and technical processes. Mineral surfaces in natural systems are often exposed to fluids at non-equilibrium conditions resulting in surface dissolution reactions. Such reactions cause the formation of surface nanotopography and, consequently, the exposure of different types of surface atoms. The quantitative effect of nanotopography on the efficiency of adsorption reactions at crystal surfaces is not known. Using kinetic Monte Carlo simulations, we combined a model of muscovite (001) face dissolution with a consequent model of radionuclide adsorption on the rough mineral surface. The model considers three different adsorption sites based on the muscovite surface cations: silicon, tetrahedral, and octahedral aluminum. Two different nanotopography configurations are investigated, both showing similar adsorption behavior. Octahedral aluminum surface atoms defined by having the highest reactivity toward adsorption are exposed solely on steps and pits on the muscovite (001) face. Thus, their availability directly depends on the surface nanotopography. The model results show the need for a more precise parameterization of surface site-specific adsorption, taking into account the coordination of the involved surface cation such as kink, step, or terrace sites.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.