Abstract

BackgroundCurrently, the influence of muscle traction on the postoperative stability of humeral prostheses is not adequately researched. This study analyzed the prosthesis’ stability in vitro during muscle traction considering different bone defect sizes. MethodsThe reverse humeral prosthesis “AEQUALIS™ ADJUSTABLE REVERSED” (Stryker) was implanted using press-fit into ten bones with a length of 200 mm and 160 mm. Subsequently, the models were torqued in 30 cycles using a universal testing machine (2 Nm – 6 Nm) and loaded axially to simulate muscle traction. The axial weight increased from 7.7 kg (pure muscle traction) over 40 kg (45-degree abduction) to 69.3 kg (90-degree abduction). The prosthesis’ relative micromotion was simultaneously measured at three different measurement heights using high-sensitivity displacement transducers and compared to the relative micromotion without axial load. ResultsIt was found that a larger torsional moment was associated with a larger relative micromotion in both bone defects studied. However, the influence became significant (P < 0.014) in bone models with predominantly larger defect.Furthermore, no significant influence of muscle traction on relative micromotion could be detected for the larger bone models at any of the measurement levels (P = 1.000). In contrast, smaller bones showed no significant differences in muscle traction until a torsional moment of 6 Nm (P < 0.028). ConclusionIn conclusion, a larger torsional moment is associated with a higher relative micromotion and muscle traction, conclusively, has no effect on the primary stability of the reverse prosthesis for a 200 mm bone in vitro.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.