Abstract

The influence of muscle geometry on muscle shortening of the gastrocnemius medialis muscle (GM) of the rat was studied. Using cinematography, GM geometry was studied during isokinetic concentric activity at muscle lengths ranging from 85 to 105% of the optimum muscle length. The shortening speed of the distal fibre, the proximal aponeurosis and the muscle were determined, as well as the effect of rotation of the distal fibre and the proximal aponeurosis on the muscle speed of shortening. The results show that, due to the geometrical configuration, muscle shortening spped is not only determined by the speed of the fibre, but also to a large extent by the aponeurosis shortening speed. At optimum muscle length, the fibre and aponeurosis shortening speeds expressed relative to the muscle shortening speed amounted to 84% and 6%, respectively. At shorter muscle length, fibre speed relative to muscle speed decreased to values as low as 35%, whereas that of aponeurosis increased to values as high as 31%. Angular effects on the muscle speed of shortening can explain 10% of the muscle shortening speed at optimum muscle length and up to 34% of the muscle speed at shorter muscle length.In addition, a model was formulated to simulate the geometrical effects on muscle speed. This model, incorporating both fibre and aponeurosis length changes, contains a transfer function relating the shortening speeds of fibre and aponeurosis to muscle speed. The muscle shortening speed calculated using this transfer function demonstrated no significant differences with the speed measured experimentally.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.