Abstract
Green and environment-friendly rubberized concrete has attracted extensive attention from scholars worldwide. However, the incorporation of crumb rubber can weaken the mechanical properties of concrete, particularly when it is subjected to elevated temperatures. To improve the residual compressive performance of rubberized concrete, a novel multi-scale fiber reinforced rubberized concrete (MSFRRC) is developed by adding calcium carbonate whiskers, polyvinyl alcohol (PVA) fibers, and steel fibers. In this study, 10%, 20%, and 30% of the sands are substituted by the same volume of crumb rubber with sizes between 0.4 mm and 0.8 mm. The impacts of the crumb rubber content and multi-scale fiber on the residual Young's modulus, axial compressive strength, peak strain, stress-strain curve, and compressive toughness of MSFRRC after being heated up to various temperature levels (25 °C, 200 °C, 400 °C, 600 °C, and 800 °C) are discussed. Also, the failure mode combined with the acoustic emission technology and the thermal effect on the microstructure of rubberized concrete specimens, are investigated. Results reveal that incorporating multi-scale fiber can effectively restrain the development of cracks and explosive spalling under high temperatures. Besides, it can cover the strength loss caused by crumb rubber and impose a positive effect on resisting thermal damage. The compressive strength of MSFRRC can be enhanced by about 5.4%–19% with the incorporation of different fibers. The results show that specimens without fibers suddenly fail once the peak stress is reached and exhibit brittle fracture. However, the brittleness can be improved by adding multi-scale fibers. It can be observed that, after exposure to 800 °C, the damage of MSFRRC can develop at the early loading stage and develop in the whole loading process, showing a relatively ductile fracture. Meanwhile, the pore structure can be refined by adding CaCO3 whiskers and the addition of multi-scale fibers can slightly increase the porosity and cannot restrain the heating-induced pore coarsening. Furthermore, the empirical formulas to predict the residual stress-strain relation of MSFRRC under uniaxial compression are proposed by considering crumb rubber, multi-scale fibers, and high temperature.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.