Abstract

The Athlete Biological Passport (ABP) is a longitudinal tool used in anti-doping to monitor biological parameters known to change with performance-enhancing drug use. The ABP consists of multiple modules, including two aimed at detecting the use of endogenous anabolic androgenic steroids: the urinary and serum steroid modules. Human chorionic gonadotropin (hCG) is a protein hormone potentially abused by male athletes to increase the production of endogenous testosterone. To date, no studies have investigated the impact of extended hCG administration on the urinary and serum steroid modules of the ABP. The goal of this study was to identify the impact of multiple hCG administrations on the parameters tracked as part of the urinary and serum steroid modules of the ABP. Ten recreationally active, healthy male individuals self-administered seven 250 μg hCG injections over 3weeks. Serum and urine samples were collected before, during, and 2 weeks following the final injection. All ABP parameters were quantified in the respective matrix, and steroid profiles were created with Anti-Doping Administration and Management System adaptive model upper and lower limits for both matrices. In both serum and urine profiles, testosterone increased; however, the testosterone/epitestosterone ratio in urine and the testosterone/androstenedione ratio in serum showed minimal changes. Additionally, serum luteinizing hormone (LH) was quantified using an immunoassay, and a serum testosterone/LH ratio was generated. Serum LH values decreased during administration causing large increases in the serum T/LH ratio, indicating this ratio may be a more sensitive parameter for detecting hCG abuse than urinary testosterone/epitestosterone or serum testosterone/androstenedione.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call