Abstract

SummaryPlant defence traits, such as herbicide resistance mutations, may incur a fitness cost to plants that become evident when the trait is not needed. However, individuals with multiple herbicide resistance traits may decrease fitness beyond that of plants with a single herbicide resistance mutation. Multiple herbicide‐resistant (MHR) Amaranthus tuberculatus populations are becoming more prevalent in Midwest United States agroecosystems. The objective was to determine whether selected MHR A. tuberculatus populations express differential development when grown in a herbicide‐free environment. The hypothesis was that MHR A. tuberculatus populations become increasingly less fit when additional herbicide resistances evolve. Multiple herbicide‐resistant and herbicide‐susceptible A. tuberculatus populations were grown in a herbicide‐free field for 20 weeks for two seasons. Differences (P < 0.001) in apical growth were detected 5 and 7 weeks after transplanting for all populations in 2016 and 2017 respectively. Gender and population influenced (P < 0.001) flowering date, with males flowering up to 1.5 weeks earlier than females, but did not cause pollination asynchrony. Shoot biomass was not different (P = 0.84) across A. tuberculatus populations, but there were differences (P < 0.001) for gender and year. Seed production was different amongst A. tuberculatus populations (P = 0.001), but was not influenced by the number of MHR traits. Conversely, a negative quadratic relationship between seed mass and the number of MHR traits was observed (r2 = 0.32; P < 0.001). The experiment results demonstrate that MHR in A. tuberculatus populations is not incurring a fitness penalty that will remove the populations in the immediate future.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call