Abstract

PurposeFilament wound pressure vessels have a characteristic pattern observed in their helical layers. These are mosaic‐shaped patterns and affect the layer structural behavior. The present research aims to focus on the influence of mosaic patterns on stress‐strain field and structural design of thin‐walled internally pressurized filament wound pressure vessel. The widely used stress analysis procedures and the commercially available finite element tools usually neglect the effect of the mosaic patterns. The present work seeks to deal with the modeling and stress analysis of complete pressure vessel, incorporating mosaic patterns.Design/methodology/approachThe incorporation of the mosaic effect provides more realistic modeling of the real stress distribution and the stress values compared to the conventional analyses (the effect would depend on the shell structure, i.e. number of plies, relative thicknesses, etc.). The structural analysis is performed using commercial finite element analysis (FEA) tools ANSYS.FindingsThe comparison of results of analytical solution and conventional FEA provides close values of the stresses in the plies. As for the stress and strain distributions obtained by incorporating the effect of mosaic patterns are considerably different. The distribution of the stress and strain fields are not uniform along the length of the vessel and along its circumference and the maximum stresses acting in the direction of the fibers are higher than those calculated using conventional FEA techniques.Originality/valuePrevious work was limited to composite cylindrical shells, without incorporating the end domes. The present work deals with the modeling and stress analysis of complete pressure vessel, incorporating mosaic patterns.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call