Abstract
The morphology of semi-solid alloy is one of the key influence factors on the rheological behavior of slurry during die filling and the mechanical properties of formed parts. However, it is difficult to study such effect due to hard controlling of morphology in semi-solid state. In this paper, a self-developed Searle-type viscometer was used to determine the rheological behavior of A356 aluminum alloy in different morphology, which was refined with the salts mixture of K2TiF6 and KBF4. The results indicated that the flow behavior of refined A356 alloy in the semi-solid state possesses obviously thixotropic behavior under isothermal shearing condition with less time to reach steady state and lower steady apparent viscosity as compared to that of the A356 alloy. During continuous cooling at a constant shearing rate, the apparent viscosity of refined A356 slurry in the same solid fraction decreased with the content of Ti. It is shown from quantitative image analysis that the primary α-Al grain in the refined alloy evolves from dendrites to rosettes or sphericitys, and then tends to be rounder and finer in higher Ti content. The mechanism of the influence of morphology on rheological behavior was also discussed in this paper.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.